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Abstract. A detailed analysis of defect clusters (topological and geometrical) in hexagonal
networks is presented. The conditions that have to be met by a cluster for it to be embedded in an
hexagonal network are enunciated, which are related to the sequence of saturated (3-connected)
and unsaturated (2-connected) vertices at the periphery of the cluster (vertex sequence). The type
of hexagonal network (perfect, dislocated or disclinated) in which a defect is embedded depends
on simple parameters (the strengthP of the cluster and a Burgers vectorB for dislocation
clusters) which can be obtained from the vertex sequence. Equivalent clusters can be embedded
in hexagonal networks of the same topology and equivalence classes are identified for all types
of clusters.

Disclination defects of given strength,P (P 6= 0), may fill into one or more classes,
depending onP . For dislocation defects (P = 0) there are infinitely many classes, each defined
by a vectorB. The strain field and strain energy density in the hexagonal network around a
single defect cluster is evaluated for geometrical and topological defects of any type, using a
continuum approach.

1. Introduction

In the study of cellular systems, typified by liquid or solid foams and polycrystals, it
is usual to consider two extreme types of structures, namely, completely ordered with
identical cells, and completely disordered or random with cells of different sizes and shapes
(see, for example, Weaire and Rivier [1]). In two-dimensional (2D) cellular systems with
trivalent vertices (three edges at each vertex) the simplest ordered structure is the hexagonal
network or honeycomb, formed by identical regular hexagonal cells. Random 2D cellular
systems have cells with a distribution of areas and number of sides,i (equal to the number
of neighbours). An intermediate degree of order in a 2D network can be achieved by
introducing defects in an originally perfect honeycomb. The network in which the defects
are embedded is hexagonal, but the cells are no longer regular hexagons because of the
strain due to the defects. The defects to be considered can be classified as point defects as
distinct from line defects (grain boundaries) which separate two hexagonal networks. We
discuss only isolated defects, leaving the problem of defect interaction for future research.

The central question that will be discussed is as follows. What conditions must a defect
cluster satisfy for it to be possible to surround the cluster with hexagonal cells, which form
an (unbounded) hexagonal network? These conditions are purely topological. The area of
the cluster and the areas of its individual cells can be changed at constant topology without
changing the areaA0 of the surrounding hexagonal cells.
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The discussion in this paper therefore concentrates on topological properties of clusters
and we may admit that all cells (the cluster cells and the surrounding cells) have the same
area. Geometrical effects appear only when the strain field of a defect is considered, and
will be discussed at the end of the paper.

Isolated defects in honeycomb soap froths have been the object of some recent theoretical
[2–4] and experimental studies [5–7]. A defect grows by invading the surrounding
honeycomb and randomizing it. The effect of defects on the mechanical properties of
solid honeycombs has also received attention in recent years (e.g. [8]).

Defects in periodic media is of course a subject that has attracted enormous attention
in the literature. However, the application of this basic knowledge to defects in cellular
structures is rather limited. Morral and Ashby [9] discussed in detail a particular type of
defect—a pair of 5- and 7-sided cells—in a honeycomb. Those authors also referred to
other simple defects (e.g. a 4/8 pair) but did not discuss more general ones. The 5/7 pair
is a dislocation that plays an important role in the deformation of a honeycomb froth [10].
More complex defects with dislocation character were produced by the present authors in a
honeycomb froth [5] while Harris [11] produced one cell disclinations in a froth.

The plan of the paper is as follows. We first introduce in section 2 simple definitions
related to the topology of defect clusters, namely, the vertex sequence and the strengthP of
a cluster. In section 3 we give the conditions that a cluster must satisfy to be embedded in an
hexagonal network. The definition and properties of six-belts of clusters are introduced in
section 4, leading to the definition of equivalent clusters and equivalent six-belts. In section 5
we give simple rules to obtain theb-circuit (Burgers circuit) of a cluster from its vertex
sequence. In section 6 we classify the clusters into various types (neutral, dislocations and
disclinations) and identify the equivalence classes of clusters. The concept of topological
size of a cluster is introduced in section 7. Finally, section 8 deals with the strain field and
strain energy density of topological and geometrical defects.

2. Vertex sequence and power of a cluster

At the periphery of a cluster of cells we distinguish between unsaturated and saturated
vertices, with respectively two and three edges of the cluster connected at them. These
vertices are marked by (o) and (·), respectively, in the cluster of figure 1(a). Dangling
edges (d-edges) can be connected at the (o)-vertices. The total numbers of (o) and (·)-
vertices at the periphery of a cluster areu and s, respectively. The number of peripheric
edges of the cluster isp with

p = u+ s. (1)

The average number,n̄c, of sides per separated cell of the cluster is given by (e.g. [12])

n̄c = 6− 6+ p − 2u

Nc
= 6+ u− s − 6

Nc
(2)

whereNc is the number of cells in the cluster. For each cluster we define the numberP ,
called the strength of the cluster, as

P = u− s − 6. (3)

The average number̄nc of sides per separated cell is then

n̄c = 6+ P

Nc
. (4)
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The sequence of (o) and (·)-vertices at the periphery of a cluster will be termed the vertex
sequence of the cluster. It can be displayed by marking the successive vertices around a
circle, as in figure 1(b). A line representation as in figure 1(c) can also be used noting that
the extremes of the line are, in fact, adjacent. Finally, a numerical representation, formed
by the (cyclic) sequence of the numbersn0 of unsaturated (o)-vertices between successive
(·)-vertices, provides a more condensed representation of the vertex sequence; an example
is given in figure 1(c). In this representation the number of entriesn0 is s and the sum of
all entries isu. Therefore,P + 6 equals the sum of thes numbers (n0− 1).

Figure 1. (a) A defect cluster withNc = 12 cells, s = 8 saturated (·)-vertices andu = 14
unsaturated (o)-vertices. (b) The vertex sequence is displayed on a circle or (c) on a line diagram.
The numerical sequence of vertices is also indicated in (c). The cluster can be embedded in an
hexagonal network, as shown in (d) where the short six-belt is formed by the shaded cells. In
(e) is shown a simplified drawing of the cluster short six-belt. The arrow indicates a starting
point for the vertex sequence shown in (c).

As hexagonal cells are connected at the periphery of the cluster, the vertex sequence
changes. The transformations that can occur as one hexagon is added to expand the cluster
are of the following types, as regards the changes that they originate locally in the vertex
sequence (see figure 2)

o · · · · o → · · Op1

o · · · o → ·o · Op2

o · · o → · o o· Op3

o · o → · o o o· Op4.

(5)

The quantityP is conserved in all these operations. The reverse of operations (5), which
will be indicated by Op̄1, etc, can be used to remove any peripheric six-cells that a cluster
may have in order to obtain a proper defect cluster.
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Figure 2. Operations Op1 to Op4 of the addition of an hexagonal cell at the periphery of a
cluster. The original (·)-vertices are marked with crosses in the final state.

3. Embeddable clusters

The problem that we wish to address can be stated as follows (see figure 1). Given a 2D
cluster of interconnected cells, can it be incorporated in an hexagonal network, that is, can
it be surrounded by successive shells of hexagonal cells? We refer to these clusters as
embeddable clusters. The cluster of figure 1(a) can be embedded in an hexagonal network
as shown in figure 1(d) and, in a simpler representation, in figure 1(e). Three conditions
have to be met for a cluster to be embeddable.

1. The cluster has at least three (o)-vertices:

u > 3. (6)

This condition is generally required for a cluster to be surrounded by cells with a number
of verticesi > 3 (convex networks).

2. As hexagonal cells are placed around the cluster, through successive operations of
types Op1 to Op4, defined earlier, the number of (o)-vertices does not increase except in
Op4. If hexagonal cells (of constant areaA0) are to be placed indefinitely, the number of
(o)-vertices has to increase, that is, at all stagesu− s > 0; otherwise the average tangential
linear dimension of six-cells would increase as new six-cells are added around the cluster.
Since the differenceu − s = P + 6 is invariant, we conclude that an embeddable cluster
must have

P > −5. (7)

If u = s as in figure 3 hexagons can be placed indefinitely, but since the number of (o)-
vertices does not increase in successive shells, the average angular width of the hexagons
will remain constant. We do not consider clusters withP < −5.

3. There are particular subsequences of (o) and (·) vertices in the vertex sequence which
forbid the insertion of successive hexagons. For example, the subsequence

o · · · · · o
with five successive (·)-vertices does not permit the insertion of an hexagon, as shown in
figure 4(a). This sequence is indicated by{5}. Other forbidden subsequences are those
that inevitably lead to five or more successive (·)-vertices when hexagons are added (i.e. in
whatever order or location the hexagons are placed, five or more successive (·)-vertices will
appear). This means that the forbidden subsequences are those that can be obtained from
{5} by the reverse operations Op1̄ to Op̄4. Using this method, it is possible to enumerate
all forbidden subsequences derived from{5}. Examples are

{043} {142} {332} {1331} {03231} {12321} {0304031} {0222221}. (8)
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Figure 3. The vertex sequence shown in (a) hasu = s and is surrounded by successive layers
of hexagons as in (b) and (c). However, the number of hexagons in successive layers remains
constant, implying that their average peripheric length increases indefinitely.

In figure 4(b) is shown the forbidden sequence{043}.
Forbidden subsequences are derived from{5} through operations that leave (u − s)

unchanged. Subsequences with more (·)-vertices are of course also forbidden. Forbidden
subsequences are thus of the form

{a1a2 . . . an} with
n∑
i=1

(ai − 1) > 4. (9)

However, this condition is not sufficient for a subsequence to be forbidden. For example
{33} and{42} are permitted subsequences as shown in figure 4(c) for{42}.

Figure 4. (a, b) Examples of vertex subsequences to which hexagonal cells cannot be added.
Both haven(·) − n(o) = 3. However, the subsequence{42} in (c) with the same difference
n(·)− n(o) = 3 can accommodate hexagons.

In conclusion, embeddable clusters haveu > 3, u > s (orP > −5) and no subsequences
such as (8) which can be derived from{n} with n > 5.
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4. Six-belts and equivalence of clusters

The first complete shell of connected hexagons around an embeddable cluster will be termed
the cluster short six-belt. Other shells of this type encircling the defect are termed six-belts.
The short six-belt of the cluster of figure 1(a) is formed by the hatched cells of figure 1(d).
All cells in and outside any six-belt are, of course, hexagons. Another example of a short
six-belt is in figure 5(a), with the dangling edges (d-edges) of the six-belt drawn at the
outer periphery of the belt. In this and other drawings, the hexagons are represented in
successive concentric shells (see also figure 1(e)). Each hexagon of a six-belt is connected
to two other hexagons in such a way that no more than two six-cells of the belt meet at
a vertex. The six-cells of the belt therefore have, at most, two (o)-vertices (twod-edges).
Six-cells with three or four (o)-vertices, such as in figure 6, need not and will not be used
in six-belts.

The vertex sequence of a cluster completely determines the topology (or arrangement)
of the hexagons around the cluster. If hexagons are added to the cluster at its periphery
another cluster is obtained which is embeddable in the same network. The two clusters,
their vertex sequences and six-belts are said to be equivalent. Equivalent vertex sequences
can be obtained by using the operations Op1 to Op4 previously defined (equation (5)) by

Figure 5. The six-belt in (a) is transformed into a standard six-belt shown in (c) by the addition
of two successive hexagons, as indicated in (b) and in the numerical representation at the bottom.

Figure 6. Hexagonal cells with three or four dangling edges are excluded
from six-belts.
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the addition of hexagons at the periphery of a cluster. Clearly the reverse operations can
also be used to transform a vertex sequence into an equivalent one.

We will now show that given a vertex sequence it is possible to find an equivalent
vertex sequence with entries 1 and 2 only, that is, such that: (a) the number of successive
(o)-vertices is at most 2 and (b) there are no successive (·)-vertices. Such a vertex sequence
(for example{12212221}) will be termed a standard vertex sequence. The number of entries
2 is P + 6.

Given an arbitrary vertex sequence (e.g. the one of figure 5(a)), an equivalent standard
sequence can be obtained by first eliminating subsequences of two, three or four successive
(·)-vertices by means of operations Op1 to Op3 defined in (5). This procedure is exemplified
in figure 5(b) and leads to the vertex sequence in figure 5(c). Next, any subsequences with
three or more (o)-vertices are fragmented using the following rule

o · ooo· o→ ·oo · oo · oo · oo ·
o · ooo· o→ ·oo · oo · oo · oo · oo · etc

in which n successive (o)-vertices are replaced by (n + 1) pairs (o o) separated by one
(·)-vertex. This rule results from the application of successive Op4 operations and a final
Op3.

To a standard vertex sequence we may associate a standard six-belt which is a six-belt
for which the vertex sequence at its outer periphery is that standard sequence. Figure 5(c)
shows an example of a standard six-belt.

In conclusion, we may characterize a cluster by a standard vertex sequence or a standard
six-belt, which are equivalent to the vertex sequence of the cluster and to its short six-belt,
respectively, in the sense that a unique network of hexagons around the defect is determined
by them.

5. The b-circuit

In the hexagonal lattice of the perfect and regular honeycomb we take three primitive vectors
b1b2b3 in the clockwise sequence (figure 7). We have

b1+ b2+ b3 = 0. (10)

Any two independent±bk define a unit cell of the hexagonal lattice. If the hexagons in
an hexagonal network surrounding a defect cluster are not arranged periodically, we may
always define the vectorsbk at each hexagon after having defined their orientation at a
particular hexagon. Each±bk defines a neighbour of a particular hexagon.

We now consider an arbitrary six-belt of a defect withs hexagons (s (·)-vertices) and
circulate around it clockwise, starting at hexagon 1. Associated with each six-belt hexagon
we define a vector±bk which is the vector between that hexagon and the previous one in
a clockwise circuit. The vector associated with hexagoni will be denoted byb(i). We call
b1 to the vector associated with the first hexagon (b(1) = b1). The vectorsb(i) associated
with successive hexagons are obtained by rotating the antecedentb by 1θi given by

1θi = π

3
(ui − 1) (11)

whereui is the number of (o)-vertices preceding the (·) vertexui . (In a standard sequence
ui take values 1 or 2 only.) The sequence of±bk vectors can then be obtained which ends
at a vectorb(s) having started withb(1) = b1.
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Figure 7. Examples of construction ofb-circuits associated with vertex sequences of defect
clusters: (a) for a neutral defect; (b) for a dislocation defect, and (c) for a disclination defect.
In (a) and (b) the circuit is redrawn in a perfect hexagonal network (starting point S; finishing
point F). The three primitive vectorsb1 b2 andb3 of the hexagonal lattice are shown at the top.
All circuits haveb(1) = b1; (·)-vertex 1 is marked with an arrow.

The total rotation of the initial vectorb1 or, equivalently, the angle betweenb(s) and
b1 (rotation ofb(s) to coincide withb1) is∑

1θi = π

3

∑
(1− ui) = π

3
(s − u) = 2π + π

3
P (12)

where the sum is over all the (·)-vertices (over all entriesui) in the numerical vertex
sequence.

If P = 0, the last vectorb(s) coincides withb(1) (note that 2π is the sum of the turning
angles in a closed polygonal circuit) and there is a one-to-one correspondence between (·)-
vertices andb-vectors in the sequence. The defect has no disclination character. IfP 6= 0
the angle betweenb(s) and b(1) is (π/3)P . The defect has disclination character, the
strength of the disclination being (π/3)P .
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Figure 8. (a) Schematic illustration of the extra half-rows of hexagonal cells associated with a
dislocation of Burgers vectorB = n1b1− n2b2. (b) The hexagonal network forB = −b2+ b3

with indication of the four extra half-rows.

When theb-circuit of a defect withP = 0 is repeated in the perfect honeycomb it does
not in general give a closed circuit. The finishing pointF does not coincide with the starting
point S. The defect is a dislocation with Burgers vectorB defined as the vectorSF . If F
coincides withS it is B = 0 and the defect is embeddable in a perfect honeycomb. It can
be termed a neutral defect. In general

B =
S∑
i=1

b(i) P = 0 (13)

where the sum is over all vectorsb(i) of a b-circuit.
The b-circuit can be constructed based on any equivalent vertex sequence. Both the

total rotation ofb(1) and the Burgers vector (forP = 0) are invariant. In particular, one
can use directly the vertex sequence of the cluster, with no need to consider any six-belt.
In figure 7 we give examples ofb-circuits obtained directly from the vertex sequences of
three defect clusters of each of the three main types of clusters. ForP = 0, theb-circuits
are repeated in the perfect honeycomb (figures 7(a) and (b)).

The vectorB of dislocation defects can be expressed in any vector basis, formed by
two primitive vectors±bk. By conveniently choosing the primitive vectorsbk one can write
the vectorB in the form

B = n1b1− n2b2 (14)

wheren1 > n2 > 0 are the smallest possiblebk components ofB. The form (14) can
easily be found by using (10). For exampleB = b1 + b2 can be replaced byB = b1.
However, when dealing with more than one defect (e.g. interaction between defects) one
must consider a unique basis and theB vectors may have other forms.

The hexagonal network surrounding a dislocation defect keeps its translational symmetry
but contains extra half-rows of hexagons. It is easily found that forB in the form (14)
the number of extra half-rows is 2(n1 + n2), with n2 extra rows in direction 1,n1 extra
rows in direction−2 and (n1 + n2) extra rows in direction−3, as schematically shown in
figure 8(a). An example is given in figure 8(b) for a dislocation withB = b1− b2.

Finally we note that forP 6= 0, a B vector defined by (13) is dependent on the
(equivalent) vertex sequence chosen. Therefore, forP 6= 0 theb-circuit merely gives the
strength of the disclination defect andB cannot be defined.
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6. Minimal standard sequences and equivalence classes

Two equivalent clusters have equivalent vertex sequences and six-belts and can be embedded
in an hexagonal network of given topology. The clusters can then be put in equivalence
classes. In order to characterize the classes we indicate a standard vertex sequence for each.
There are, however, infinitely many choices for a given class. We will choose what we
term a minimal standard sequence, which is the one with the smallest number of vertices
(i.e. with smaller numbers of entries 1 and 2). Since the number of entries 2 is fixed (equal
to P +6), a minimal sequence is the standard sequence with minimum number of entries 1.

In the appendix we indicate how to obtain the minimal sequence from a given standard
sequence and how to show that a sequence is minimal. Using the method described in
the appendix we have identified all equivalence classes for eachP > −5. The result is
summarized in table 1. Examples of actual simple clusters (with at most two cells) are
given in the table for a number of equivalence classes.

Table 1. Topological classes of defect clusters in hexagonal networks.

P Minimal six-belt Burgers vector Simple clusters

−5 2 (12) — 4/3
−4 22, 122 — 5/3; 4/4
−3 222, 1222 — 3; 4/5
−2 2222, 12222 — 4; 5/5; 3/7
−1 222222 — 5; 4/7; 3/8
0 (1)n1 2(1)n2 22222 n1b1 − n2b2 5/7; 4/8; 3/10

(b1) (b1 − b2) (2b1)a

1 2222222 7; 5/8; 4/9; 3/10
1< P 6 5 22. . .2b and

122. . .2b

6 (1)n1 2(1)n2 2 . . .2c n1b1 − n2b2

a Burgers vector of each cluster.
b (P + 6) sequence of 2.
c (P + 5) sequence of 2.

For P = 0 the defects are dislocations and can be classified in terms of the Burgers
vectorB which can take any form of type (14). The minimal sequence for a given pairn1,
n2 in (14) can be written in the form

{(1)n1 2(1)n2 22222}
B = n1b1− n2b2 (14)

where(1)n indicatesn successive entries 1.
For otherP that are multiples of six (i.e.P = 6k, wherek is an integer) there are

infinitely many distinct vertex sequences of type (14) with the five successive entries 2
replaced by 5+ 6k entries 2. Although these defects (fork 6= 0) are disclinations, they can
be identified by a vectorB, as for dislocations.

For eachP = 6k± 1 (i.e.P = −5,−1, 1, 5, 7, . . .) there is a unique equivalence class,
with minimal sequence formed byP + 6 entries 2

{2 2 2 2. . .}. (15)

ForP = −5 the minimal sequence{2} should be regarded as a formal representation of the
defect; an equivalent sequence which can be realized with convex cells is{12}. Figure 9
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Figure 9. All defect clusters withP = −1 are equivalent. The figure shows how defects with
one or two cells andP = −1 can be embedded in the same network. The defects are: (a) a
five-cell; (b) a 4/7 pair and (c) a 3/8 pair. The common standard six-belt is redrawn in the
network in (d) which is topologically identical to the one in (a).

shows the equivalence of clusters withP = −1 and one or two cells. For all these clusters
with P = −1 a unique standard sequence can be found which is indicated in the figure.

Finally, for P = 6k ± 2 andP = 6k ± 3 there are two equivalent classes for eachP ,
with minimal sequences containing zero or one entry 1

{2 2 2. . .2}
{1 2 2 2. . .2}. (16)

As discussed in the appendix, these two sequences are equivalent forP = 6k ± 1.

7. Topological size number of a defect cluster

The short six-belt of a defect cluster containss hexagons. This number then gives an
indication of the topological size of a cluster, i.e. of its perimeter. If the defect is neutral
(P = 0, B = 0) the interior of the short six-belt can be filled withN hexagons, and this
is another measure of the size of the defect, which we term the topological size numberN .
The actual area of the defect withNc cells can of course be different fromNcA0 whereA0

is the area of one hexagonal cell in the surrounding honeycomb.
To define a topological size number of a general defect cluster we proceed as follows.

First, we transform the vertex sequence of the defect into a sequence with a minimum
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number of vertices. To do this we use operations (5) and their reverse. The net number
of hexagons that are placed inside the short six-belt can be path dependent, as shown in
the example of figure 10. LetN0 be the smallest net number. In the final vertex sequence
the number of (·)-vertices issm (in figure 10,N0 = 1 andsm = 1). LetN1 be the integer
following or equal to (sm + 1), then the size number of the defect is defined as

N = N0+N1. (17)

For example, an isolated cell withi sides (i 6= 6) has size number 1 (N1 = 1) and a pair of
5/7 cells has size number 2 (N1 = 2). The change in size number is a convenient measure
of the number of cells invaded by a defect that grows into a honeycomb froth [5].

Figure 10. The number of hexagonal cells that is introduced inside a six-belt is path dependent.
In the example, the minimum number of hexagons inserted isN0 = 1.

8. Strain field and strain energy of defects

The hexagonal network around a defect cluster is in general distorted relative to the perfect
honeycomb. This is due to the topological changes caused by the defect and also by the
change of area resulting from the introduction of the defect.

We first assume that the change of area is zero (topological defect). For a neutral defect
this will mean that the area inside a six-belt is the same as in the perfect honeycomb. For
dislocation or disclination defects, the definition of the excess area of a cluster can be given
in terms of the topological size of the cluster,N . The excess area,1A, is the difference
between the actual area inside the cluster short six-belt andNA0, whereA0 is the area of
a cell in the honeycomb.

We treat the honeycomb as a 2D elastic isotropic continuum with Young’s modulusE

and shear modulusG. The Poisson’s ratio is

υ = E

2G
− 1. (18)

It will be assumed in the following that the 2D medium is incompressible; thenυ = 1 and
E = 4G. A particularly important case is that of a 2D honeycomb froth, for which

G = 1

2
√

3

γ

a0
(19)

wherea0 is the edge length (A0 = (3
√

3/2)a2
0) andγ is the film tension [10, 13].
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For a dislocation defect we can use the well known equations for the elastic strain field
of an edge dislocation at a fairly large distancer from the defect. Using polar coordinates
(r, θ , with θ = 0 in the direction ofB), the strain components for an incompressible 3D
medium (υ = 1/2) are (e.g. [14])

εrr = εθθ = 0 εrθ = B

2π

cosθ

r
. (20)

These are also the strain components of the elastic field due to a dislocation in an
incompressible 2D medium (εzz = 0). The average (overθ ) strain energy density at a
distancer is

ω = G

4π2
B2 1

r2
. (21)

This is an energy per unit volume, that is, per unit area of the 2D honeycomb and unit length
perpendicular to it. The average energy density decreases withr−2 which is a consequence
of the r−1 dependence of strain (and stress). ForB given by equation (13) we have

B2 = n2
1+ n2

2+ n1n2 (n1, n2 > 0). (22)

The strain field of a disclination cluster can be calculated as follows. The arrangement
of six-cells around the cluster, centred at zero, can be obtained from the arrangement of the
cells in a perfect honeycomb by inserting (forP > 0) or removing (forP < 0) a wedge
of hexagonal cells of anglePπ/3 centred at zero (see, for example [11]) as schematically
shown in figure 11 forP = +1. This is because the number of six-cells in successive
six-belts around the cluster increases byP + 6 as one goes from one six-belt to the next
(outer) belt, while that number increases by six in the reference, hexagonal network.

Figure 11. The arrangement of cells in the hexagonal network around a disclination cluster
is obtained from that in a perfect honeycomb (a) by introducing a wedge of hexagonal cells
of angular widthP(π/3) at a radial cut (C) in the honeycomb. The displacementu in polar
coordinates (r, θ ) has componentsur , uθ . The figure is drawn forP = 1.

The displacement fieldu associated with the disclination cluster is the strain field
caused by the insertion/removal of the wedge. Using polar coordinates (r, θ ) (figure 11),
the radial componentur of the displacement can easily be found assuming that the medium
is incompressible. When the wedge is introduced, the changeur = 1r in r of a point in
the honeycomb is given by

1(πr2) = P π
6
r2. (23)
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Then

ur = P

12
r. (24)

This immediately gives

εrr = ∂ur

∂r
= P

12
. (25)

Since the strain field is radially symmetric, the principal directions of strain are the radial
(r) and tangential (θ ) directions and

εrθ = 0. (26)

Also, because of the assumed incompressibility, we have

εθθ = −εrr = − P
12
. (27)

This can also be obtained directly from the tangential component of the displacementuθ
which is given by

uθ = −P
6
rθ (28)

whereθ is the angular polar coordinate relative to a reference directionθ = 0 whereuθ = 0
(θ is in the direction of increasingθ ).

The strain energy densityω of a disclination cluster of strengthP in an incompressible
hexagonal network is then

ω = 1

2
E(εεrr + ε2

θθ ) =
G

36
P 2 (29)

proportional toP 2 and independent ofr.
The equations written above for the strain field of a 2D disclination assume an indefinite

medium and differ from those derived by Timoshenko [15], for a 3D (wedge) disclination
at the axis of a hollow finite cylinder.

The strain field of a geometrical defect of excess area1A in an incompressible
honeycomb also has radial symmetry. The changeur = 1r of the distancer to the
defect is simply obtained from

1(πr2) = 1A (30)

or

ur = 1A

2πr
. (31)

The components of strain are then

εrr = −εθθ = − (1A)
2

2πr2
εrθ = 0 (32)

and the strain energy density is

ω = G(1A)
2

2π2r4
. (33)
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9. Summary

Defect clusters in hexagonal networks can be topologically characterized by the sequence
of two-connected and three-connected vertices (respectively (o)-vertices and (·)-vertices) at
their periphery. The vertex sequence determines the type of hexagonal network in which
the cluster is embedded.

Three main types of clusters can be identified, depending on the strengthP of the
cluster, defined as the difference between the total number of edges in the cluster and 6Nc,
whereNc is the number of cells forming the cluster. ForP 6= 0 the cluster has disclination
character and the hexagons around the cluster are rotated. ForP = 0, the cluster type
depends on its Burgers vector, which can also be determined from the vertex sequence. For
B = 0 the cluster is neutral and the hexagonal network around the cluster is perfect. For
B 6= 0 the network is dislocated and contains extra half-rows of hexagonal cells. ForP = 0
(and also forP = 6k) there are infinitely many classes of clusters, each characterized by a
vectorB. For P 6= 0 (andP 6= 6k), there are at most two classes for eachP , each with
a specific arrangement of the hexagons around the cluster. In general, the classes can be
identified by particular vertex sequences (minimal sequences) which have been enumerated.

Given an arbitrary cluster of connected cells, it may not be possible to embed it in
an hexagonal network. The conditions under which the cluster can be on embedded were
enunciated in terms of properties of the vertex sequence. In particular, the strength of the
clusterP must exceed−6.

If the area of a cluster of cells in an hexagonal network differs by1A from the area of
Nc hexagonal cells (Nc is the number of cells in the cluster) there is a geometrical defect
which in general adds to the topological defect.

Topological and/or geometrical defects induce strain in the surrounding hexagonal
network. The strain field of disclination defects was evaluated using an elastic continuum
approach for the surrounding network and admitting a strain field with radial symmetry. A
similar calculation was done for purely geometrical defects. For dislocations we used well
known results related to their strain field. While the strain (and stress) field of a dislocation
defect decreases withr−1 (r is the distance to the defect), the strain field of a geometrical
defect decreases withr−2 and that of disclination is independent ofr. As a result, the strain
energy density of a disclination cluster is a constant independent ofr and proportional to
P 2 (equation (29)), the strain energy of a dislocation cluster decreases withr−2 and is
proportional toB2 (equation (21)) and the strain energy of a geometrical defect cluster
decreases withr−4 and is proportional to (1A)2 (equation (33)).

Appendix. Minimal vertex sequences

Given a standard vertex sequence it is possible, by means of relatively simple rules, to
obtain other equivalent, standard sequences which determine the same arrangement of the
hexagons in the surrounding network. These operations change the number and location of
entries 1 in the vertex sequence but leave the number of 2 unchanged. For defects with
P = 0 (dislocations) the operations also leave invariant the Burgers vector. The rules that
we indicate here are in fact obtained from the product of operations (5), such that only
standard six-belts are obtained.

The basic rule relates the vertex sequences in two successive (adjacent) standard six-
belts. The sequence of the outer six-belt is obtained from the one of the inner six-belt by
introducing an extra entry 1 between successive 2, as in

12211212→ 112121112112.
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The reverse operation, when possible, allows a simplification of the vertex sequence.
The more general rule to be used is one to form a six-belt from a pair of adjacent

(successive) six-belts. In the transformation one goes from one six-belt to the other and
then returns to the original belt where the circuit is closed. The rule can be described by
the following equations, where(1)n indicates a sequence ofn entries 1 and (1,2) a sequence
with at least one entry 2 (the dots indicate eventual additional entries which are unchanged)

. . .12(1)n 21. . .→ . . .2(1)n+1 2 . . .

. . .12(1, 2) 21. . .→ . . .2(1, 2) 2 . . . .

In the operations from left to right one goes from the outer to the inner six-belt, and
vice versa.

In particular cases we have, forn = 0

1221→ 212

and for(1, 2) = 2

12221→ 222.

The minimal six-belts for eachP are obtained by eliminating as many 1 as possible
with the operations just indicated. ForP = 0 the minimal sequences can be put in the
general form

(1)n1 2(1)n2 22222 (A1)

where n1 > n2 > 0 define the Burgers vector (see equation (14)). For example, in
{12122222} no further 1 can be eliminated. Similar forms are obtained forP = 6k, with
the 5 entries 2 replaced by 5+ P entries 2.

For P 6= 6k, all sequences can be reduced to one of the forms

222. . .2

1222. . .2 (A2)

with P +6 successive 2. ForP = 6k±1 these two sequences are equivalent. For example,
for P = −1.

22222 = 1222122 = 222212.
(Op2) (Op1)

For P = 6k ± 2 or P = 6k ± 3 the two sequences (A2) are not equivalent.
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